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I. SUMMARY

The overall objective of this study program is to
define the requirements for simuiation of the radiant heating attendant
to atmospheric entry by manned spacecraft and assessment of technigues
for achieving this simulation. Phase I of the study was to define
the radiant heating inputs for manned missions. During this Phase
the objectives have been met insofar as possible with existing
data. This howevef is significantly short of the desired environment

and simulation
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information voids are discussed and illustrated. Possible acticn

to improve this condition will be recommended in the midterm report.

The obtaining of the information required for Phase II has been initiated
and is slightly ahead of schedule. (See last section of this report.)
During the subsequent reporting period the material on radiation

sources will be evaluated in terms of the requirements established

in Phase I.



II. INTRODUCTION

This is the Phase I Report submitted under contract
NAS 9-3507 and covers the period of 23 September through 10 November
1964.

A. Program Objective

Phase I - Definition of Radiant Heat Inputs for Manned Missions

is phase of the program shall include definition
a n of the radiant heating environment associated
manned entry into planetary environments. Consideration shall
be given to re-entry velocities from those characteristic of Apollo
(35,000 to 45,000 ft/sec)} to those characteristic of manned planned
planetary missions (50,000 to 70,000 ft/sec and greater).

1 O

2. The Contractor shall investigate and report his
findings of scaling and other simulation criteria necessary for
predicting material behavior under radiant entry heating conditions.
Particular emphasis shall be placed on investigating the necessary
sample model size of the required spectral distribution of the energy
from the radiant source, and of the necessity for programming the
radiant heat input.

Phase II - Evaluation cof Existing Radiant Heater Technology

1. A study shall be carried out on those radiant
sources which might be utilized in entry simulation facilities.
The following radiatior sources shal. be evaluated: a) Solid
and gas discharge lamps; bj) Electron beam heaters; c¢) Resistance
or induction heaters; d} Solar furnace; e) Direct arc column
heating.

2. The evaluation of the performance characteristics
of the sources shall include: a) Maximum radiant flux attainable:
b) Spatial and temporal uniformity of flux at test section;

c) Spectral distribution of the radiant flux; d) Compatibility
with convective heating sources; e} Operational characteristics:
and f) Economics.

Phase III - Definition of Future Research and Development Requirements
1. On the basis of existing technology the state of the

art of radiative and combined convective-radiative simulators shall
be established.



2. Comparison shall be made between the state of the
art of radiant heater technology and the future re-entry environment
requirements. On the basis of this comparison specific recommenda-
tions for future development efforts shall be made if the existing
technology is not adequate.

B. Program Organization

This program originates from the Structures and Mechanics
Division of the NASA Manned Spacecraft Center. Mr. D. H. Greenshields,
Thermo-Structures Branch is the Technical Representative for NASA MSC.
The Project Director at AVCO/RAD is Dr. R. R. John. Mr. T. K. Pugmire

is the Project Engineer. Other participants in this phase of the
study are Drs. 5. Bennett, T. Laszlc and R. Timmins and Messrs.
P. Andrews, M. Hermann and R. Liebermann. Several changes were
2
£

made in participating personnel for this phase of the study ove

those originally proposed. The necessity of the changes was dictated
by the program rather than external motivations and resulted more
appropriate study inputs. P. Andrews and R. Liebermann contributed
in the area of environment definition and S. Bennett and M. Hermann
provided data and analyses pertinent to the evaluation of the
simulation requirement. R. Timmins assisted with information of
chemical reactions resulting from radiation fluxes and T. Laszlo
provided data on a variety of radiation sources.
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IIT. DEFINITION OF RADIANT HEAT INPUTS FOR MANNED MISSIONS

A. Stagnation Conditions

A literature search to establish the limits of possible
radiant heating for the manned entry corridor (limits established
by C 12 g undershoot, C overshoot, L/D 12 g undershoot and
Lmax . . . ax
L/Dmax overshoot) provided Somewhat disappointing results. 1In general,
predictions at the higher velocities, in excess of 40,000 feet per
second, differ by factors of more than two.

For flight velocities less than 40,000 feet per second
in the more recent repcrts the agreement among investigators is

relatlvely good. The radiant heating fluxes pertinent to those
flight velocities are demonstrated by the trajectories shown in

~Figure 1. Figure 2 provides a velocity versus time plot of these

flight profiles. For the re-entry trajectories the following other
conditions apply:

Clrmax: W/CDA = 42 psft
a = 60°
L/D = 0.6
L/Dpax W/CA = 147. psf
a = 30°
L/D = 1.2

The specific equilibrium radiation data used to predict the radiation
heat transfer for these conditions was that of Allen and Textoris?

and where considered applicable and valid the results of Kivel and
Balley (The earlier work cf Kivel and Bailey's results considerably
overestimate the radiative intensity at temperature above 9000°K.)

For these calculations stagnation point shock detachment distances

were estimated assuming a two-dimensional flow. Heating distributions
were made for the windward side assuming a plane, optically thin

slab model with linear temperature and density gradients normal to

the surface. The shock geometry was derived from NASA-Langely schieren
photographs. Nonequilibrium radiatiocn calculations were based entirely
on the experimental data cf Allen et al.’/ No density dependence was
considered and an arbitrary attitude cutoff of 280,000 feet was assumed.
The heating rates for these conditions are shown in Figures 3-6. Some
of the results are contaired in Reference 9.



As indicated previously there exists an uncertainty
as to the radiant heating expected for flight velocities over 40,000
feet per second. Figure 7 indicates a generalization of this uncer=zzinty
for velocities up to 65,000 feet per second. (Data used for this
generalization is from References 1-8.) With only order of magnitude
results being required for the purpose of outlining general radiation
heating simulation requirements the stagnation point heating history
curve of Figure 8 is felt to be an adequate guide. This curve is
representative of the heating that can be expected to be associated
with the earth re-entry following a planetary or space probe type
mission.

A further generaiization of entry corridors and the
associated radiationheating is shown in Figure 9.

A 8eneralized banrd including the results of various
investigatorsl ~14 of radiant heating for entry into planetary
atmospheres of any combiration mixture of carbon dioxide and

nitrogen is shown in Figure 10. By selection of the appropriate flight
conditions, this band will provide adequate order of magnitude results
for entry into the atmospheres of Mars and Venus.

B. Spectral Distribution {Air)

A literature search for the spectral radiance distribution
for high temperature air provided difficulties similar to those encountered
when attempting to establish the magnitude of radiation heating rates.
The relatively current (ir. open literature) variation for spectral

radiance of equilibrium air at 8,000°K for = 0.1 - 1.3 microns is
shown in Figure 11. A generalizstion of the distribution for
several temperatures for 1000-100,000 A is shown in Figure 12. For

comparison purposes a plot of normal shock nonequilibrium radiation
for 9% COZ’ 90% N, and 1% A from Reference 12 is Figure 13.



IV. RELATIONSHIP OF FLIGHT PARAMETERS TO
SIMULATION REQUIREMENTS

The spectral radiance significantly varies with
composition, pressure and temperature. Therefore, the spectral
distribution of radiant energy from the gas cap as seen by the
heat shield material represents a rather complicated phenomenon
as there are not only pressure, temperature and species and compo-
sition variation and gradients but also gas-phase and surface
combustion, radiatiocn absorption blocking and re-radiation.8 Production

cf 2ll cof these parameters can only be accomplished in a flight test.
However, experience has shown in other aspects of laboratory simulation

that meaningful evaluations and engineering design data can be
obtained from less than exact duplication of flight conditions. What
now remains is the establishment of relative importance of the several
factors mentioned, necessary model sizes, combined radiative and
convective heating and the effects on all of the factors resulting
from parameter changes associated with the entry trajectory.

As there are only several facilities capable of obtaining useful

data in this field there is very little actual data on which to

base decisions. The more significant reﬁorts.are those of Howe and
Viegas8, Diaconis et al 5, fundell et all®, Howel7, Lundell et alls,
Louis et all?‘ and various internal reports., While reports of

the nature of the latter classification are not generally available
they can provide additional usefuldata. In this regard References 20-
22 have applicable data.

In spite of the availabiiity of references,data in this
field is sparse and inclusive. One 1s not able at this time to
specify which parametersin rzdiant heating simulation of entry
conditions must be duplicated.

From data on the more simple heat protection materials
such as teflon, graphite and phenolic nylon it would appear that
if the total net heat to the material surface (surface temperature
constant) the material performance is nearly constant regardless of
the ratio of convective to radiative heating. This is confirmed in
the data of Lundell et allso It should be noted that considerable
significance can be attached to duplication of the total net heating
input and maintaining a surface temperature equivalent to that which
would be associated with flight conditions even for the simple materials.
Constant gross heating with variations of the ratio of convective
and radiative heating seem to produce significant changes in total
net heating.



Importance of a matched spectral distribution in radiation
simulator cannot be determined at the present time. Data in this
area is extremely sketchy and in one instance even contradictory.
At low net flux levels, less than a few watts/cmz, it has been observed
that certain organic materials may react differently chemically. A
good example of this is the film coatings which produce different
colors dependent on the spectral distribution of the incident radiation.
It is also a well established fact that a material's emissivity is
wave length dependent. Though slight this has some effect on re-radiation
and hence the net heat flux. It has also been noted in several cases
similar material performance has been observed in materials tests of
pure radiative fluxes with an argon arc discharge source and one with
a plasma heater convective source. The following data and analysis is
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A. Pure Radiative Materials Test

A diagram of the experimental apparatus is shown in
Figure 1l4. A gas stabiliized arc column was maintained between a
thoriated tungsten cathode and a copper anode as shown. The viewing
port, quartz window, allowed a complete view of the arc column. A
radiometer was used to measure the emitted radiation per unit arc
column length. Spectral radiance was also determined with a Littrow
mount prism spectrograph. (One of the curves of spectral radiance
of argon in this device is shown in the following section.) The
distance R (see Figure 14) from the geometrical center of the generator
to the face of the radiometer is large in comparison to the
dimensions of the observed arc column so that the exposed column could
be treated, for a first approximation, as a point source. Neglecting
the effect of the window, less than 10%. the radiant intensity I_.
at the receiver is related to the total radiant energy & . of the
exposed column by

2
Ir=é‘/4 R

Division of the total radiant energy by the exposed length of arc
column provided the emitted radiation per unit length of the obserwved
column. This estimation was checked by varying both the distance R
and the exposed length of arc column and the results agreed within
experimental error. It was interesting to note that this first order
approximation was only 20% higher than the results obtained from the
spectral radiance measurements obtained spectrographically. ,K For the
materials testing the model was located directly opposite the viewing
port normal to the arc column. To compensate for material recession
during the test and hence the change in incident flux the followinrg




analysis was applied. Assuming . is the distance of the front surface
of the model to the center of the arc column and,{o is this distance
at time to then:

2R
It
o
Qe

and qg =4g (’[o)-'e

'!;2 + C = kj qr (jo).»/ot

2 2 :
Y L2 =2% q ([o)fot

2 .
A plot of £ -ugoz versus g 4jo)t yields a straight

line with a slope of 5.25 x 10~ in2 T (admittedly inconsistent
units). kw_ _ sec
) o2
-3 i
Therefore 2k14[0 = §59 x 10 Kég% /-g%% )in. For these tests

2[% = 0.394 in, therefore

k = 1.67 x 10 2 —in

/ S
1 sec c<Cm

The material being tested has a density of 1.65 gm/cm3 or 4.2 gm/cm2 - inch.

Therefore, a recession rate of 1 inch/sec is a mass loss rate of 4.2
gm/cm2sec hence, m = 7.02 x 102 gm/kilojoule.

*
From this a material performance or QT can be calculated:

Qf = 14.3 kilojoules/cm

or
Q; = 3,430 cal/gm
To relate this performance to the performance of the material that

might be observed in a straight convective heating test, reflection
must be accounted for. A reasonable value of material emissivity with
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a surface temperature of 3000°K is 0.75. Reflection of incident

flux would reduce Q*n by 25% and re-radiation would reduce it by 10%.
(Note under the present test conditions blocking could not be
considered as a significant factor.) With these reductions Q*g  is
reduced by 37% to 2500 cal/gm. Recognizing that this evaluation is
rough and preliminary it is noted that thls value is almost identical
with the Q* for this material obtained’ stralght convective heatlng
simulation facilities. The plot of the data points on the £ 2 ‘L 2
versus ér(,eo)t graph is shown as figure 15.

B. Spectral Radiance of Sources
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where otherwise noted. Particular attentionshould be given to figures

16 and 17 which show the dependence of spectral radiance of nitrogen
and oxygen on temperature. Nitrogen at 7.7 atmospheres is shown 1in
Figure 18, Xenon, Reference 23, Figure 19, Argon, Figure 20, and

a carbon arc, Reference 24, in Figure 21.
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FIGURE 12 - SPECTRAL RADIANCE OF EQUILIBRIUM AIR (1000 - 100,000 A)
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